

A New Record of *Hypoxyton carneum* Petch from India, based on morphological and molecular characteristics

GAUTAM DUTTA*, JUNMONI DAS AND R. K. SINGH

Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh-791112, India

Received : 21.12.2024

Accepted : 08.05.2025

Published : 30.06.2025

The genus *Hypoxyton* is highly diversified, with species exhibiting saprophytic, symbiotic, or moderately parasitic habitat. A five-year survey conducted in Arunachal Pradesh, North-East India, resulted in the collection of fungi belonging to the families Hypoxylaceae and Xylariaceae, including six species of *Hypoxyton*. Among these, *Hypoxyton carneum* Petch is reported as a new record for India, based on morphological characters and molecular phylogenetic analysis. The teleomorphic features (stromata, perithecia, asci, and ascospores) of the specimens were examined and compared with other valid *Hypoxyton* species. Phylogenetic analysis using Maximum Likelihood (ML) of the internal transcribed spacer (ITS) regions of rDNA confirmed the identification. Globally, the genus *Hypoxyton* comprises approximately 232 species, of which 36 were previously reported from India. This study increases the known number of *Hypoxyton* species in India, contributing to the understanding of fungal diversity in the region.

Keywords : Fungi, Hypoxylaceae, Phylogeny, Sordariomycetes

INTRODUCTION

The genus *Hypoxyton* Bull., the largest within Hypoxylaceae, comprises 232 species globally, with 95 having molecular sequence data. It belongs to Hypoxylaceae (Xylariales, Xylariomycetidae, Sordariomycetes), previously classified under Xylariaceae. Multigene phylogenetic studies by Wendt *et al.* (2018) redefined *Hypoxyton* within Hypoxylaceae, a family characterized by *Nodulisporium*-like anamorphs (Hyde *et al.*, 2020). Traditionally, species were identified by stromatal and ascospore morphology (Miller, 1961), later supplemented with stromatal pigments and asexual morphs (Ju and Rogers, 1996). Modern taxonomy integrates morphological and molecular data for species delineation. *Hypoxyton* species are primarily saprophytic or endophytic in angiosperms to others, contributing to cellulose

and lignin decomposition and providing ecological benefits such as pathogen resistance. Some species act as facultative parasites, and their secondary metabolites facilitate species segregation (Helaly *et al.*, 2018). While *Hypoxyton* is globally distributed, it is most diverse in tropical and subtropical regions.

Arunachal Pradesh, a biodiversity hotspot in northeastern India, features diverse vegetation across altitudinal gradients, from tropical rainforests to alpine shrubs. Its unique ecosystem and rich biodiversity, including endemic fungi, underscore its importance for ecological studies (Deb *et al.* 2008; Dutta and Singh, 2023 a,b,c; Singh *et al.* 2024).

MATERIALS AND METHODS

Specimens were examined macroscopically and microscopically, with morphological features observed using a stereo zoom microscope (Zeiss Stemi58). Slides were prepared for compound

*Correspondence: gautam.dutta@rgu.ac.in

microscopy (Zeiss A1) to study stromatal structures, including ascomata, perithecia, ostioles, asci, paraphyses, periphyses, and ascospores. A 10% KOH test was performed on stromatic tissues (Ju and Rogers, 1996), with color descriptions following Rayner (1970). The ascal apical apparatus was determined using Melzer's reagent. Measurements of stromata (n=10), ascomata (n=10), and ascospores (n=40) were taken in water, with mean values included in descriptions.

The specimens are deposited at ARUN (Arunachal Pradesh, India), with the isotype stored at ARFR, Rajiv Gandhi University. Photographs were processed using Adobe Photoshop. DNA was extracted using the CTAB method, and the ITS region of rDNA was amplified with primers ITS1 and ITS4. PCR conditions were: initial denaturation at 95°C for 3 min, 35 cycles of 94°C for 40 sec, 55.8°C for 45 sec, and 72°C for 1 min, followed by a final extension at 72°C for 10 min (White *et al.* 1990). The ITS1 and ITS4 consensus sequence is submitted to NCBI, obtaining a GenBank accession number.

Molecular Phylogenetic analysis

In this study, for the phylogenetic analysis limited nrITS sequences of different species including the newly generated sequence, were used for data analysis. Phylogenetic analysis was performed using the nrITS dataset, which comprised the newly generated sequence along with sequences retrieved through BLAST searches of previously published data. The nrITS dataset was aligned using MAFFT (Katoh *et al.* 2019). Maximum likelihood (ML) phylogenetic analysis based on the nrITS sequences was conducted using MEGA 11 software (Tamura *et al.*, 2013). Nodal support values were estimated with 1,000 bootstrap (BS) replicates, and bootstrap support values (mostly >50%) from the ML analysis are displayed above at the nodes.

RESULTS AND DISCUSSION

Taxonomy

***Hypoxyylon carneum* Petch, Ann. R. bot. Gdns Peradeniya 8: 157 (1924). Fig. 1**
GenBank No: PQ069709

Distribution: Worldwide (GBIF)

Habitat: Saprophytic, growing on tree twigs

Teliomorph: Stromata effused-pulvinate, plane, 0.7–5.0 cm long, 0.3–1.3 cm broad and 0.6–0.7 mm thick, surface chestnut (40); brown, black or light reddish brown granules immediately beneath surface and between perithecia, tissue below the perithecial layer thin, 0.2–0.4 mm., 10% KOH extractable pigments olivaceous green; Ostioles depressed below the stromatal surface; Perithecia cylindrical to hemispherical, 0.4–0.5×0.2–0.3 mm diam.; Asci 92–160 µm long, 6.5–8.0 µm broad, with spore-bearing parts 67–83 µm long and stipe 25–57 µm long, apical apparatus bluing in Melzer's reagent, discoid, 0.8–1.0 µm high × 2.2–2.5 µm broad; Ascospores light brown to brown, unicellular, ellipsoid, nearly equilateral, with narrowly rounded ends, 8.0–11.5 × 4.5–5.0 µm, with straight germ slit up to spore length, perispore smooth, dehiscent or indehiscent in 10% KOH, episore smooth.

Specimen examined: India, Arunachal Pradesh, Papum Pare district, Doimukh, Sub-tropical forest (27°08'57"N 093°46'11"E; 205 msl), On dead tree twigs, 10 January 2024, coll. G. Dutta. ARUN F-0091; ARFR-822

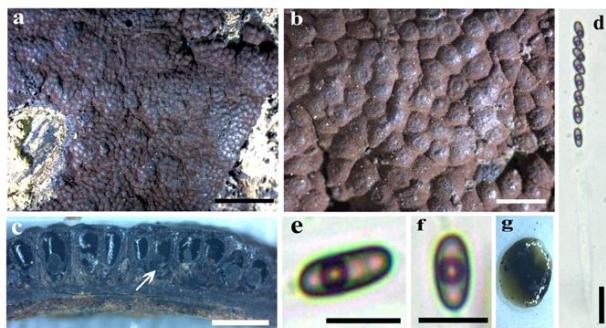

Notes: Morphologically *Hypoxyylon carneum* is very similar to *H. hongheensis* but different in respect to positioning of ostioles which is positioned at the level of the stromata surface in the former whereas depressed in the latter species. Additional difference between them are dark orange vs. olivaceous green KOH-extractable pigments; cylindrical to hemispherical (0.4–0.5 × 0.2–0.3 mm diam.) vs. spherical (0.3–0.45 × 0.3–0.5 mm diam.) perithecia; and straight germ slit vs. no germ slit (Yang *et al.* 2022). Moreover, both species are comparatively similar in having effused-pulvinate, superficial stromata with a reddish-brown to brown surface, and a peridium composed of brown, thick-walled cells of *textura angularis*. The asci measure 92–160 × 6.5–8.0 µm, with spore-bearing parts 67–83 µm long and stipes 25–57 µm long; the apical apparatus is discoid (0.8–1.0 µm high × 2.2–2.5 µm broad) and turns blue in Melzer's reagent. In contrast, *H. hongheensis* has 8-spored, unitunicate, cylindrical, hyaline asci measuring 67–102 × 7–11 µm, apically rounded and

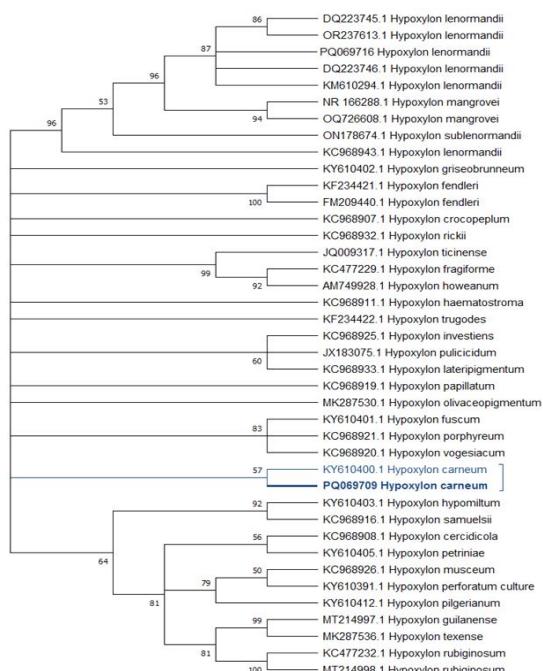
Table 1: ITS sequences with GenBank accession number used in this study and newly recorded species sequences are marked in bold

Species	GenBank accession No.	Origin	Reference
<i>Hypoxylon carneum</i>	KY610400.1	France	Wendt <i>et al.</i> 2018
<i>Hypoxylon carneum</i>	PQ069709	India	This Study
<i>H. cercidicola</i>	KC968908.1	France	Wendt <i>et al.</i> , 2018; Kuhnert <i>et al.</i> , 2014
<i>H. crocopeplum</i>	KC968907.1	France	Wendt <i>et al.</i> , 2018; Kuhnert <i>et al.</i> , 2014
<i>H. fendleri</i>	KF234421.1	French Guiana	Wendt <i>et al.</i> , 2018; Kuhnert <i>et al.</i> , 2014
<i>H. fendleri</i>	FM209440.1	Thailand	Suwannasai <i>et al.</i> 2013
<i>H. fragiforme</i>	KC477229.1	Germany	Wendt <i>et al.</i> 2018
<i>H. fuscum</i>	KY610401.1	France	Wendt <i>et al.</i> 2018
<i>H. griseobrunneum</i>	KY610402.1	India	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. guilanense</i>	MT214997.1	Iran	Pourmoghaddam <i>et al.</i> 2020
<i>H. haematostroma</i>	KC968911.1	Martinique	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. howeanum</i>	AM749928.1	Germany	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. hypomiltum</i>	KY610403.1	Guadeloupe	Wendt <i>et al.</i> 2018
<i>H. investiens</i>	KC968925.1	Malaysia	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. lateripigmentum</i>	KC968933.1	Martinique	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. lenormandii</i>	KC968943.1	Ecuador	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. lenormandii</i>	DQ223745.1	Thailand	Suwannasai <i>et al.</i> 2005
<i>H. lenormandii</i>	OR237613.1	China	From BlastN analysis
<i>H. lenormandii</i>	DQ223746.1	Thailand	Suwannasai <i>et al.</i> 2005
<i>H. lenormandii</i>	KM610294.1	Thailand	Kuhnert <i>et al.</i> 2014
<i>H. lenormandii</i>	PQ069716	India	From BlastN analysis
<i>H. mangrovei</i>	NR_166288.1	China	Zeng <i>et al.</i> 2022
<i>H. mangrovei</i>	OQ726608.1	Indonesia	From BlastN analysis
<i>H. musceum</i>	KC968926.1	Guadeloupe	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. olivaceopigmentum</i>	MK287530.1	USA	Sir <i>et al.</i> 2019
<i>H. papillatum</i>	KC968919.1	USA	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. perforatum</i>	KY610391.1	France	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. petriniae</i>	KY610405.1	France	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. pilgerianum</i>	KY610412.1	Martinique	Wendt <i>et al.</i> 2018
<i>H. porphyreum</i>	KC968921.1	France	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. pulicidum</i>	JX183075.1	Martinique	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. rickii</i>	KC968932.1	Martinique	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. rubiginosum</i>	KC477232.1	Germany	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. rubiginosum</i>	MT214998.1	Iran	Pourmoghaddam <i>et al.</i> 2020
<i>H. samuelsii</i>	KC968916.1	Guadeloupe	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. sublenormandii</i>	ON178674.1	China	From BlastN analysis

(contd. Table 1)

<i>H. texense</i>	MK287536.1	USA	Sir <i>et al.</i> 2019
<i>H. ticinense</i>	JQ009317.1	France	Wendt <i>et al.</i> 2018
<i>H. trugodes</i>	KF234422.1	Sri Lanka	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. vogesiaccum</i>	KC968920.1	France	Wendt <i>et al.</i> 2018; Kuhnert <i>et al.</i> 2014
<i>H. olivaceopigmentum</i>	MK287530.1	USA	Sir <i>et al.</i> 2019

Fig. 1: *Hypoxyton carneum* (a) Stromata on host, (b) Stomata surface, (c) Perithecia, (d) Ascus, (e, f) Ascospores shape with oil globule, (g) 10% KOH colour test; Scale bars: (a) 4 mm, (b) 1 mm, (c) 0.5 mm, (d) 20 µm, (e, f) 10 µm.


moderately pedicellate with pedicels 16–22 µm long, and a 'J+' apical apparatus. Ascospores are light brown to brown, unicellular, ellipsoid, nearly equilateral with narrowly rounded ends, measuring 8.0–11.5 × 4.5–5.0 µm, with a straight

germ slit extending the full length of the spore; the perispore is smooth and dehiscent or indehiscent in 10% KOH, and the episporule is also smooth. Additionally, *H. hongheensis* ascospores 9–11 × 4.5–5.5 µm, uniseriate, crescent to somewhat hemispherical, initially hyaline to yellow and becoming brown or black when mature, usually containing 1–2 guttules, aseptate, rounded at the ends, and lacking a germ slit, gelatinous sheath, or appendages. (Yang *et al.*, 2022).

The phylogenetic tree of *Hypoxyton carneum*, Fig. 2 revealed four distinct clades (I, II, III, IV). Clade III comprised only two strains of *Hypoxyton carneum* with 57% bootstrap support: PQ069709, the presently isolated strain, and KY610400 from Germany. Clade I grouped with the *Hypoxyton lenormandii* cluster, while Clades II and IV included other globally distributed *Hypoxyton* species. Based on phylogenetic analysis, the tree, supported by strong bootstrap values, indicates that all clades of *Hypoxyton* species, including the analyzed strain, share similarities with globally identified *Hypoxyton* species.

CONCLUSION

The genus *Hypoxyton* demonstrates significant diversity, encompassing species with saprophytic, symbiotic, and moderately parasitic lifestyles. Through a five-year survey of fungal species in Arunachal Pradesh, North-East India, six species of *Hypoxyton* are identified, including *Hypoxyton carneum* Petch, which is recorded for the first time in India. The identification is validated using morphological examinations and molecular phylogenetic analysis of ITS rDNA regions. With this study, the number of *Hypoxyton* species reported from India has increased to 37, enhancing the understanding of fungal diversity in the region

Fig.2: Phylogenetic tree resulting from ITS-rDNA sequences of *Hypoxyton carneum*; The evolutionary history was inferred by applying maximum likelihood in RAxML-HPC2, Bootstrap support values (>50%).

and underscoring the importance of exploring biodiversity hotspots Arunachal Pradesh.

ACKNOWLEDGEMENTS

The authors are thankful to the eLibrary Consortium (DeLCON) of the Department of Biotechnology, Govt. of India for providing access to e-resources. First author gratefully acknowledges Rajiv Gandhi University for the award of research fellowship and Botanical survey of India for Fungarium accession.

DECLARATION

Conflict of interest. Authors declare no conflict of interest

REFERENCES

Deb, S., Tali, A., Singh, R.K. 2008. New Taxa of Family Xylariaceae from Arunachal Pradesh. *Ind. Forest.* **134**: 574–578.

Dutta, G., Singh, R.K. 2023 a. Five new records of *Annulohypoxylon* spp. (Hypoxylaceae) from India. *New Zealand J. Bot.* **61**:1–12. <https://doi: 10.1080/0028825X.2023.2248933>

Dutta, G., Singh, R.K. 2023 b. A Checklist of the Hypoxylaceae and Xylariaceae Species of India. *KAVAKA.* **59**: 68–87. <https://doi: 10.36460/Kavaka/59/3/2023/68-87>.

Dutta, G., Singh, R. 2023 c. New record of *Rhopalostroma brevistipitatum* (Hypoxylaceae) and checklist of *Rhopalostroma* species from India. *Lilloa.* **60**: 281–286. <https://doi.org/10.30550/j.lil/1863>.

Helaly, S.E., Thongbai, B., Stadler, M. 2018. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. *Natur. Prod. Reports* **35**: 992–1014. <https://doi.org/10.1039/C8NP00010G>.

Hyde, K.D., Norphanphoun, C., Maharanachikumbura, S.S.N., Bhat, D.J., Jones, E.B.G., et al. 2020. Refined families of Sordariomycetes. *Mycosphere.* **11**: 305–1059. <https://doi:10.5943/mycosphere/11/1/7>.

Ju, Y.M., Rogers, J.D. 1996. A revision of the genus *Hypoxylon*. St Paul (MN): *American Phytopathological Society*. (APS Press).

Katoh, K., Rozewicki, J., Yamada, K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief Bioinform.* **20**:1160-1166. <https://doi.org/10.1093/bib/bbx108>.

Kuhnert, E., Fournier, J., Peršoh, D., Luangsa-ard, J.J., Stadler, M. 2014. New *Hypoxylon* species from Martinique and new evidence on the molecular phylogeny of *Hypoxylon* based on ITS rDNA and b-tubulin data. *Fung. Divers.* **64**: 181–203. <https://doi:10.1007/s13225-013-0264-3>.

Miller, J.H. 1961. A Monograph of the World Species of *Hypoxylon*. University of Georgia

Pourmoghaddam, M.J., Lambert, C., Surup, F., Khodaparast, S.A., Krisai-Greilhuber, I., Voglmayr, H., Stadler, M. 2020. Discovery of a new species of the *Hypoxylon rubiginosum* complex from Iran and antagonistic activities of *Hypoxylon* spp. against the Ash Dieback pathogen, *Hymenoscyphus fraxineus*, in dual culture. *MycoKeys.* **24**:66:105-133.

Rayner, R.W. 1970. A mycological colour chart. Commonwealth Mycological Institute, Kew, Surrey, and British Mycological Society. 34p.<https://doi: 10.3897/mycokeys.66>.Press, Athens, Georgia, USA.50946.

Rogers, J.D. 1979. The Xylariaceae: Systematic, biological and evolutionary aspects. *Mycologia* **71**: 1–42.

Singh, P.N., Pawar, K.S., Singh, S.K., Singh, R., Datta, G. 2024. Morphotaxonomic and phylogenetic analysis of *Saprolegnia aenigmatica* from Arunachal Pradesh, India. *Ind. Phytopathol.* **77**: 345–353. <https://doi.org/10.1007/s42360-024-00725-1>.

Sir, E.B., Becker, K., Lambert, C., Bills, F.G., Kuhnert, E. 2019. Observations on Texas hypoxylons, including two new *Hypoxylon* species and widespread environmental isolates of the *H. croceum* complex identified by a polyphasic approach. *Mycologia* **111**: 832–856. <https://doi.org/10.1080/00275514.2019.1637705>.

Suwannasai, N., Martin, M.P., Phosri, C., Sihanonth, P., Whalley, A.J., Spouge, J.L. 2013. Fungi in Thailand: a case study of the efficacy of an ITS barcode for automatically identifying species within the *Annulohypoxylon* and *Hypoxylon* genera. *Public Library of Science One.* **8**(2):e54529. <https://doi.org/10.1371/journal.pone.0054529>.

Suwannasai, N., Rodtong, S., Thienhirun, S., Whalley, A.J.S. 2005. New species and phylogenetic relationships of *Hypoxylon* species found in Thailand inferred from the internal transcribed spacer regions of ribosomal DNA sequences. *Mycotaxon* **94**:303–324. <http://www.mycotaxon.com>.

Tamura, K., Stecher, G., Peterson, D., et al. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecul. Biol. Evol.* **30**:2725–2729. <https://doi.org/10.1093/molbev/mst197>

Wendt, L., Sir, E.B., Kuhnert, E., Heitkämper, S., Lambert, C., Hladki, A.I., Romero, A.I., Luangsa-ard, J.J., Srikitkulchai, P., Peršoh, D. and Stadler, M. 2018. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. *Mycologic. Progr.* **17**:115–154. <https://doi:10.1007/s11557-017-1311-3>.

White, T.J., Burns, T., Lee, S., Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols, a guide to methods and applications. Academic Press, San Diego, CA, USA. pp. 315–322.

Yang, E.F., Karunaratna, S.C., Dai, D.Q., Stephenson, S.L., Elgorban, A.M., Al-Rejaie, S., Xiong, Y.R., Promputtha, I., Samarakoon, M.C., Tibpromma, S. 2022. Taxonomy and Phylogeny of Fungi Associated with *Mangifera indica* from Yunnan, China. *J. Fungi* **8**: 1249. <https://doi.org/10.3390/jof8121249>

Zeng, Q., Lv, Y.C., Xu, X.L., Deng, Y., Wang, F.H., Liu, S.Y., Liu, L.J., Yang, C.L., Liu, Y.G. 2022. Morpho-Molecular Characterization of Microfungi Associated with *Phyllostachys* (Poaceae) in Sichuan, China. *J. Fungi* (Basel). **8**(7):702. <https://doi.org/10.3390/jof8070702>.